«THERE’S PLENTY OF ROOM AT THE BOTTOM», OR HOW NANOTECHNOLOGIES CAN CHANGE THE WORLD OF CONCRETE

«THERE’S PLENTY OF ROOM AT THE BOTTOM»,

It’s quite impossible to imagine modern construction without concrete. Today the world volume of concrete being produced is more than 4 milliard of m3 per year. Concrete is used under different operational conditions, it is ecologically friendly material and it has unlimited source of raw materials and comparatively low cost.

One should also mention its high architectural and construction expression, comparative simplicity and accessibility of technology, opportunity to use widely local raw materials and anthropogenic wastes utilization in its production, low energy intensity, ecological safety and operational reliability. Undoubtedly it is the reason why concrete will remain the main building material in the foreseeable future.

References:

1. Bhushan В. (Ed.) Handbook of Nanotechnology, Springer, 2004.
2. Gann D. A Review of Nanotechnology and its Potential Applications for Construction, SPRU, University of Sussex, 2002.
3. Whatmore R.W. and Corbett J. Nanotechnology in the Marketplace / Computing and Control Journal, June, 1995, p. 105-107.
4. Atkinson W.I. Nanocosm – Nanotechnology and the Big Changes Coming From the Inconceivably Small, AMACOM, p. 36-39.
5. Poole C.P. and Owens F.J. Introduction to Nanotechnology. John Wiley and Sons, 2003.
6. Klabunde K.J. (Ed.) Nanoscale Materials in Chemistry. John Wiley and Sons, 2001.
7. Cortie M. The Weird World of the Nanoscale Gold /Gold Bulletin, World Gold Council, London, V. 37, № 1-2, 2004.
8. Liu H.B., Ascencio J A., PerezAlvarez M. et al. Surface Science, 491, 2001, p. 88.
9. Dick K., Dhanasekaran Т., Xhang Z. et al. Am. Chem. Soc, 124(10), 2002, p. 2312.
10. Wilson M., Smith K.K.G., Simmons M. et al. Nanotechnology – Basic Science and Emerging Technologies. Chapman & Hall/CRC, 2000.
11. Trtik P., Bartos P.J.M. Nanotechnology and concrete: what can we utilize from the upcoming technologies? / Proceeding of the 2nd Annamaria Workshop: Cement & Concrete : Trends & Challenges, 2001, p. 109-120.
12. Scottish Centre for Nanotechnology in Construction Materials.
13. Dalton A.B., Collins S., Razal S.J. et al. Continuous carbon nanotube composite fibers: properties, potential applications, and problems. J. Mater. Chem., 14, 2004, p.1-3.
14. Arrard G.S., Glyde J.C, Goltner C. Nature, 378, 1995, p. 366-368.
15. Beaudoin J.J. Why Engineers Need Materials Science / Concrete International, V. 21, № 8, 1999, p. 86-89.
16. Plassard C, Lesniewska E., Pochard I. et al. Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscaled / Ultramicros-copy, V. 100, № 3-4, 2004, p. 331-338.
17. Corradi M., Khurana R. and Magarotto R. Controlling Performance in Ready Mixed Concrete / Concrete International, V. 26, № 8, 2004, p. 123-126.
18. Ferrada M.G., Escobar M., Dominguez W. et al. U-Silice ISO-14001: Silice a Favor del Medio Ambiente/ XIV Jornadas Chilenas del Hormigon, Valdivia, Chili, 2003.
19. Collepardi M., Ogoumah-Olagot J.J., Sharp U. et al. Influence of Amorphous Colloidal Silica on the Properties of Self-Compacting Concretes Proceedings of the Interna ti onal Conference. Challenges in Concrete Construction – Innovations and Developments in Concrete Materials and Construction, Dundee, UK, 2002, p. 473-483.
20. Collepardi M., Collepardi S., Sharp U. et al. Optimization of Silica Fume, Fly Ash and Amorphous Nano-Silica in Superplasticized High-Performance Concretes / Proceedings of 8th CANMET / ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, SP-221, Las Vegas, USA, 2004, p. 495-506.
21. Li H., Xiao H-G., Yuan J. et al. Microstructure of cement mortar with nano-particles / Composites: Part B, 35, 2004, p. 185-189.
22. Kang S., Hong S.I., Choe C.-R. et al. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process / Polymer, 42, 2001, pp. 879-887.
23. Li G. Properties of high-volume fly ash concrete incorporating nano-SiO2 / Cement and Concrete Research, 34, 2004, pp.1043-1049.
24. Batrakov V. and Sobolev K. Multicomponent Cement Based Superplasticized High Strength Concretes: Design, Properties and Optimization / 5th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, USA, 1995, p. 695-710.
25. Li H., Xiao H-g, Ou J-p. A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials / Cem Concr Res., 2004. 34(3), p. 435-8.
26. Li Z., Wang H., He S. et al. Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite / Mater Lett, 2006; 60(3), p. 356-9.
27. Chang T-P, Shih J-Y, Yang KM. et al. Material properties of Portland cement paste with nano-montmorillonite / J. Mater. Sci., 2007; 42(17), p. 7478-87.
28. Kuo W-Y, Huang J-S., Lin C-H. Effects of organo-modified montmorillonite on strengths and permeability of cement mortars / Cem. Concr. Res., 2006; 36(5), p. 886-95.
29. Li H, Xiao H-g, Yuan J., Ou J. Microstructure of cement mortar with nanoparticles / Compos B Eng., 2004; 35(2), p. 185-9.
30. Morsy M.S., Aglan HA., Abd El. et al. Nanostructured zonolitecementitious surface compounds for thermal insulation / Construct Build Mater., 2009. 23(1), p. 515-21.
31. Не X., Shi X. Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials /Transport Res Board Record: J Transport Res Board, 2008(2070), p. 13-21.
32. Siddique R., Klaus J. Influence of metakaolin on the properties of mortar and concrete: a review / Appl Clay Sci ., 2009; 43(3-4), p. 392-400.
33. Birgisson В., Beatty C.L. Nanomodified concrete additive and high performance cement paste and concrete therefrom / International application number: PCT/ US2007/073430. International filling date: 13.07.2007.
34. Lindgreen H., Geiker M., Kroyer H. et al. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates / Cem Concr Compos., 2008; 30(8), p. 686-99.
35. Kroyer H., Lindgreen H., Jacobsen H.J. et al. Hydration of Portland cement in the presence of clay minerals studied by 29Si and 27Al MAS NMR spectroscopy / Adv Cement Res., 2003; 15. p. 103-12.
36. Proceedings of «The 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications» (Eds: N. Banthia, T. Uomoto, A. Bentur and S.P. Shah).
37. Falikman V.R. Polycarboxylated hyperplasticizers: yesterday, today, tomorrow / Popular Concrete Science, № 2, 2009, р. 88-92.
38. Falikman V.R., Vainer A.Y. Photocatalytic active building materials with nanoparticles of titanium dioxide – new concept of improving megalopolis ecology. In collection: Problems of nanotechnologies application in construction. – Moscow: MSUCE, 2009. 120 p., p. 35-49.
39. Jennings H.M. A model for the microstructure of calcium silicate hydrate in cement paste / Cement and Concrete Research 30 (1), 2000, p. 101-116.
40. Ulm F.-J. Chemomechanics of Concrete at Finer Scales / Materials and Structures. Vol. 36, August-September 2003, p. 426-438.
41. Vandamme M., Vim F.-J. Nanogranular origin of concrete creep / Ed. by Zdenek P. Bazant. Northwestern University, Evanston, IL, May 14, 2009.
42. Richardson I.G. Tobermorite/jennite- and tobermorite/calcium hydroxidebased models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, [beta]-dicalcium silicate. Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume / Cem.Concr. Res., 2004; 34(9), p. 1733-77.
43. W. De Muynck, N. De Belie, W. Verstraete. Microbial carbonate precipitation in construction materials: a review / Ecol. Eng., 36(2), 2010, p. 118-136.


Posted

in

by

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *